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Abstract

Neural text-to-speech (TTS) models can synthe-
size natural human speech when being trained
on large amounts of transcribed speech. How-
ever, collecting such large-scale transcribed data
is expensive. In this paper, we propose an un-
supervised pre-training method for reducing the
amount of paired data required to train a sequence-
to-sequence TTS model, utilizing large untran-
scribed speech data. The main idea is to pre-
train the model to reconstruct de-warped mel-
spectrograms from warped ones. For semantically
meaningful warping/de-warping, we train a self-
supervised phoneme segmentation model and use
the segments to warp the spectrograms in a pseudo
phoneme level. In addition, as a byproduct of
our pre-training process, we can optionally lever-
age the segment-based data augmentation in fine-
tuning stage to further improve the data-efficiency.
We empirically demonstrate the effectiveness of
our method in a low-resource language scenario,
achieving outstanding performance compared to
various baselines.

1. Introduction

Parallel with the great success of pre-training neural net-
works on large-scale datasets in computer vision and natural
language processing (Girshick et al., 2014; Devlin et al.,
2019), a variety of pre-training techniques have introduced
impact in both audio and speech applications. For example,
Kunze et al. (2017) and Joshi et al. (2020) train an automated
speech recognizer on a large-scale dataset of a transcribed
language and transfer the knowledge to another language in
a supervised way. Furthermore, it has been shown that mod-
els can learn meaningful representations from unlabeled ex-
amples via semi-supervised or self-supervised pre-training
for various applications, such as emotion recognition (Lian
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et al., 2019), speech recognition (Schneider et al., 2019;
Baevski et al., 2020), speaker verification (Fan et al., 2021;
Chen et al., 2022), and language identification (Fan et al.,
2021).

In particular, we focus on the text-to-speech (TTS) applica-
tion, which requires a large amount of transcribed speech
data to produce plausible human-like speech by neural TTS
models (Wang et al., 2017; Shen et al., 2018). Constructing
such large-scale text-annotated speech is time-consuming
and costly, and even infeasible for low-resource languages.
To mitigate such labeled data deficiency, some works (Ren
et al., 2019; Liu et al., 2020; Tu et al., 2020) proposed a
semi-supervised framework, where the duality of automatic
speech recognition (ASR) and TTS is explicitly leveraged.

Recently, pre-training methods for TTS systems have been
started to be investigated (Chen et al., 2018; Moss et al.,
2020; Chung et al., 2019; Zhang & Lin, 2020). The capa-
bilities needed to be prepared for TTS models are hinted
in (Chung et al., 2019; Zhang & Lin, 2020); a sequence-to-
sequence TTS model typically attempts to learn 1) attention
alignment between the input and output sequences, and 2)
autoregressive prediction of acoustic features. Thus, those
pre-training methods are specifically designed to induce
either of such capabilities.

Clearly, the supervised pre-training methods (Chen et al.,
2018; Moss et al., 2020) directly inject necessary capabil-
ities for TTS through supervision. It is not annotation ef-
ficient. Different from the supervised pre-training, Chung
et al. (2019) present an unsupervised pre-training method
that pre-trains the decoder of Tacotron (Wang et al., 2017)
as an autoregressive speech generator. Improving this work,
Zhang & Lin (2020) pre-train Tacotron 2 (Shen et al.,
2018) to predict speech from unsupervised linguistic units
extracted by an external Vector-quantization Variational-
Autoencoder (VQ-VAE) (Chorowski et al., 2019).

The goal of this paper is to reduce the amount of transcribed
speech required for TTS training. To this end, we propose
an unsupervised pre-training method for Tacotron 2, Speech
De-warping. Our key idea is to train a TTS model to recover
original spectrograms from warped ones, i.e., de-warp them.
This task encourages the model to learn both prelinimary
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Figure 1. An overview of our self-supervised pre-training method,
Speech De-warping. First, we train an unsupervised phoneme
segmentor (Kreuk et al., 2020). Using it, we obtain the segmented
mel-spectrogram and resize each segment to the same step size.
Then, we pre-train Tacotron 2 (Shen et al., 2018) to predict the
original spectrogram from the warped spectrogram, which is fol-
lowed by fine-tuning on the TTS task with few transcribed speech.

Segmented Mel

knowledge of attention alignment and autoregressive predic-
tion. We train a segmentor to extract phoneme-like segments
in a self-supervised way, and thereby we warp spectrograms
by resizing each phonetic segment to a fixed size. Finally,
we fine-tune the model using few paired speech of a target
speaker, possibly in a low resource language. Compared to
the previous studies, e.g., Chung et al. (2019), our method
does not suffer from the model mismatch problem between
pre-training and fine-tuning since both the encoder and de-
coder of the TTS model are pre-trained. In addition, the
unsupervised phoneme segmentor used for our pre-training
can optionally be leveraged for a data-augmentation tech-
nique during fine-tuning to further improve performance.

Our main contributions are summarized as follows: 1) defin-
ing speech de-warping by phoneme-like segments as a self-
supervised task, 2) demonstrating improved data efficiency,
and 3) showing cross-language effectiveness of our method.

2. Proposed Method

We first describe the pre-training and then the fine-tuning
procedure of our method. We adopt Tacotron 2 (Shen et al.,
2018) as our baseline model and denote it by Tacotron for
simplicity. We illustrate the overall process of the proposed
method in Figure 1.

2.1. Pre-training: Unsupervised Speech De-warping

Given a series of segmentation of each audio in the pre-
training dataset, we extract mel-spectrogram segments of
them. Using 80 channel mel-spectrograms, a speech signal
is represented as an array of shape (80, N), where N is
the number of timesteps. The extracted segments are repre-
sented as arrays of shape (80, N1), (80, Na2), ..., (80, N;),

where s is the number of segments of a single speech signal
and N =37° | N,

For these segments, we construct a warped mel-spectrogram
by resizing the segments to the fixed number of timesteps
H. That is, each segment (80, N;) becomes an array of
shape (80, H). Then, the segments are concatenated by the
time axis. As a result, the original mel-sepctogram of shape
(80, N) is warped to have shape (80, sH). We use linear
interpolation for resizing and set H = 1.

We pre-train Tacotron to reconstruct the original mel spectro-
grams from those corresponding warped mel-spectrogram
inputs. We call this task Speech De-warping. In order to
feed the warped spectrograms to the model, we replace the
text embedding look-up-table of Tacotron to a simple 1D
convolutional layer which maps the mel dimension to the
embedding dimension of the Tacotron encoder. Following
(Zhang & Lin, 2020), we concatenate speaker embeddings
obtained from a speaker embedding look-up-table with the
outputs of the encoder on each timestep.'

Arbitrary warp-and-dewarp does not match the target TTS
task, where each phoneme of the input sequence is spread
across time to form the corresponding pronunciation. Thus,
it would be desired to induce such a relationship between
warped inputs and dewarped outputs. To this end, we learn
to extract pseudo phoneme segments exploited for the warp-
and-dewarp as follows.

Unsupervised Pseudo Phoneme Segmentation. To pre-
train Tacotron with semantically meaningful de-warping, we
propose to use a phoneme segmentation model as the audio
segmentor in pre-training. We leverage an unsupervised
phoneme segmentation model (Kreuk et al., 2020) which
can be trained from untranscribed data. Next, we describe
the method of (Kreuk et al., 2020) in detail.

A raw audio signal can be represented as a sequence of
scalars, x = (z1,%2,...,27), where z; € R. A convo-
lutional encoder maps the raw audio sequence x to a se-
quence of representation vectors z = (zl, 22y iy 2 L), where
z; € RN . Then, the encoder learns to minimize the follow-
ing loss:

L= ers Zzief(x) L(zi, Dk (21)), (1)

where a training set S = {x,|m € {1,2,..., M }}, and the
contrastive loss £ for each frame z; is given by:

L(z;, Dk (z;)) = —log S

exp[sim(z;,zi+1)]
JE{zi41}UD (=) EXPIsIM(Z0,25)]”
(2)

D (z;) denotes a set of K vectors randomly sampled from

"While this step is omitted in the main paper of Zhang & Lin
(2020), the authors confirm that their approach relies on the speaker
embedding and we follow the exact same way.
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To perform pseudo phoneme segmentation with the trained
model, an audio signal x is encoded into a latent vector
sequence z. For z, the score of boundary at the ¢-th step is
calculated as score(i) = —sim(z;, z;+1). A higher score
means a higher possibility that a phoneme-like boundary
is at that index. Using a peak detection algorithm over the
scores, the phoneme boundaries are obtained.

2.2. Fine-tuning: Transferring Knowledge to TTS

After pre-training Tacotron by the Speech De-warping task,
we fine-tune the model for the TTS task with a target speaker.
We use few transcribed speech data of the target speaker to
train the model. To use the text embedding layer as in the
original Tacotron, a learnable text embedding look-up-table
for the target speaker’s language is randomly initialized.

Additionally, we can optionally leverage the segmentation
model for data augmentation in the fine-tuning stage to fur-
ther improve the data-efficiency. Different from Speech
De-warping in the pre-training stage, where each mel-
spectrogram segment is warped to the same step size, we
warp the segments randomly to augment the speech data
during fine-tuning. We resize each segment by a factor ran-
domly sampled from [r, 2 — 7], where we set r = 1 in our
experiments. After training the model with this augmenta-
tion, we further train the model for a few steps without the
augmentation to adapt the model to ground truth prosody
of the target speaker, i.e., cool-down. Note that this addi-
tional technique in the fine-tuning stage is optional. While
our pre-training empirically demonstrates favorable perfor-
mance, we can further improve the performance with this
augmentation during fine-tuning.

3. Experiments

3.1. Experiment Setup

Dataset and Evaluation. We use ‘train-clean-100" sub-
set of the LibriTTS (Zen et al., 2019) dataset as the un-
transcribed pre-training set, which consists of 47.6 hours
of speech from 247 English speakers. We hypothetically
set Korean as a low resource language and select Korean
Single speaker Speech (KSS) (Park, 2018) dataset as the
transcribed fine-tuning set. Following (Chung et al., 2019;
Zhang & Lin, 2020), we define 24 minutes of speech as
1 shard of data. We construct fine-tuning datasets by ran-
domly sampling 0.5, 1, 2, 3, 5, 8, 16 shards of KSS dataset.

For evaluation, we use both objective and subjective tests.
For the objective evaluation, we use Mel-cepstral Distor-
tion with Dynamic time-warping (MCD-DTW) (Kubichek,
1993), simply denoted as MCD. The objective results are

Table 1. MCD evaluation results of several models when fine-
tuned on 0.5 shards (12 minutes) of paired speech of the target
speaker. Note that T-Pho leverages text annotations in pre-training.

Tac T-Dec T-VQ Ours T-Pho
11.98 12.07 11.11 10.56 10.40

Table 2. AB test results of our method over competitive baselines.
All methods use 0.5 shards (12 minutes) of fine-tuning data.

PREFERENCE (%)

MODEL PAIR

FORMER LATTER NEUTRAL
OURS vs. T-VQ 84.0 1.5 14.5
OURS VS. T-PHO 10.5 71.5 18.0
OURS VS. OURS + AUG 25.5 59.0 15.5

reported as an average over the test set containing 571 ut-
terances (about 22.7 minutes in total). For the subjective
evaluation, we conduct AB preference tests on 20 utterances
randomly sampled from the test set. We ask 10 raters to
choose the more preferred one among two synthesized au-
dios given the text, in terms of pronunciation, delivery, and
naturalness. They are allowed to choose neither.

Implementation details. For pre-training, we adopt
Adam (Kingma & Ba, 2015) optimizer with learning rate
10~3. The models are trained for 100K steps with batch size
16. For fine-tuning, we gradually decrease learning rate from
1073 to 10~* for 50K training steps with batch size 32. The
audio is down-sampled to 16000 Hz and Griffin-Lim (Griffin
& Lim, 1984) algorithm is used for fast experiment cycles.

Baselines. We use Tacotron 2 (Shen et al., 2018) as
a TTS model in our experiments. We denote the model
trained from scratch by Tac, the model with decoder pre-
training (Chung et al., 2019) by T-Dec, the model with
VQ-VAE-based pre-training by T-VQ (Zhang & Lin, 2020),
the model pre-trained in a supervised manner by T-Pho, and
the model with our method by Ours. T-Pho is employed
as an upper bound of performance for the unsupervised
pre-training methods, following (Zhang & Lin, 2020).

3.2. Results on Small Amount of Fine-tuning Data

Objective Evaluation. Table | presents the MCD results
of various methods when fine-tuned with 0.5 shards of
paired data. Our method achieves the best MCD value
compared to competing baselines. Unlike Ours and T-
VQ (Zhang & Lin, 2020), T-Dec (Chung et al., 2019) shows
similar performance to Tac. It may be because T-Dec could
not learn the appropriate attention alignment in pre-training
as only the decoder of Tacotron was pre-trained. Also, dif-
ferent from the original setting of (Chung et al., 2019), there
was a language mismatch between the pre-training and fine-
tuning in our experiments.

Subjective Evaluation. Table 2 shows the results of the
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Figure 2. MCD results for several amounts of paired data. The
dashed line of T-Pho indicates that it roughly plays a role of an
upper bound of the performance for the unsupervised pre-training.

Table 3. MCD results of additional experiments including ablation
study for 0.5 shards (12 minutes) of paired speech data. Naive
indicates the model pre-trained with the simple up-sampling task.

NAIVE OURS OURS + AUG T-PHO T-PHO + AUG

11.37 10.56 10.31 10.40 10.23

Table 4. MCD results of several models when fine-tuned on the
same language as the pre-training language, i.e., English.

FINE-TUNING DATA (IN SHARDS)

MODEL

0.5 1
TAC 13.79 13.79
T-VQ 11.85 10.51
OURS 11.71 10.69
T-PHO 10.61 10.21

preference test for the competitive methods using 0.5 shards
of paired speech for training. Consistent with the objective
results, our method outperforms T-VQ. Meanwhile, from
informal listening tests, we found that Tac and T-Dec failed
to produce intelligible speech.

3.3. Results on Other Amounts of Fine-tuning Data

Figure 2 presents the MCD evaluation results of the various
methods on several amounts of fine-tuning data. Our method
shows the best performance overall, and especially better
on small amounts of data. It can be said that models tend
to show better performance when using more fine-tuning
data. Also, the performance of each method gets similar
as the amount of fine-tuning data increases. The effect of
pre-training decreases when more fine-tuning data is used.

3.4. Additional Results

Unsupervised Mel-segment Augmentation. The effec-
tiveness of the unsupervised mel-segment augmentation
technique in fine-tuning stage, Aug, is shown in Table 2 and
Table 3. The proposed augmentation further improves the

performance of both Ours and T-Pho, showing applicability
to other baselines.

Ablation Study. In the proposed speech de-warping task,
we resize phonetic segments of different lengths into the
same timesteps. As a result, the alignment between the
warped spectrogram and the original spectrogram becomes
non-linear, like the alignment between text and speech. We
argue that learning this monotonic yet non-linear alignment
in pre-training is one of the key factors of our method. To
demonstrate it, we pre-train Tacotron with a simple up-
sampling task, where it learns a linear alignment between
the uniformly down-sampled spectrogram and original spec-
trogram. Refer to the supplementary material for details. We
name the simple up-sampling pre-training scheme Naive and
report the MCD performance in Table 3. When compared
to the methods from Table 1, Naive shows better perfor-
mance than Tac and T-Dec that do not learn a monotonic
alignment between encoder and decoder timesteps during
pre-training. However, it shows worse performance than
other methods (T-VQ, T-Pho and Ours) that learn a non-
linear alignment as well as the monotonic alignment during
pre-training. This results imply that learning a monotonic
and non-linear alignment benefits our method.

Fine-tuning to Seen Language. Table 4 presents the MCD
results from various methods when the language of the fine-
tuning set is same as the language of the pre-training set, i.e.,
English. We use the LIspeech (Ito & Johnson, 2017) dataset
as the fine-tuning set. When the language is unchanged,
the performance of Ours is overall similar to that of T-VQ
for the small numbers of data. However, our method is
more robust against overfitting to the pre-training language
than T-VQ as shown in Table 1. It may be because the
burden to memorize the acoustic features of the language
in pre-training stage is less for our method, since some
language-specific information is already given as inputs.

4. Conclusion

We proposed a self-supervised pre-training method for train-
ing a TTS model with few amounts of text-annotated speech
data. Our method enables us to build a TTS system for
a low resource language by leveraging a large-scale and
untranscribed speech dataset which can be easily collected.
We show that a data augmentation technique by virtue of the
byproduct of our pre-training can be used to further improve
such data efficiency. Our comprehensive experiments show
the superior performance of the proposed method compared
to other baselines. We empirically demonstrate that learning
a non-linear alignment during pre-training of the model is
beneficial compared to learning a linear alignment.
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